SIDDARTHA INSTITUTE SCIENCE AND TECHNOLOGY (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Thermodynamics (18ME0309)
Year \& Sem: II-B. Tech \& II-Sem

Course \& Branch: B.Tech - ME
Regulation: R18

UNIT -I

a)	State	L2	2 M
b) Path	L 2	2 M	
c) Process	L 2	2 M	
d) Cyclic process	L 2	2 M	
e) System.	L 2	2 M	

UNIT - II

4 a) Explain the First law of Thermodynamics' and Justify that for non-flow process.
b) Define Statements of second law of thermodynamics
i) Clausius statement ii) Kelvin-plank statement
a) Explain zeroth law of thermodynamics. of the system.
b) A Stationary mass of gas is compressed without friction from an initial state of $0.3 \mathrm{~m}^{3}$ and 0.105 Mpa to a final state of $0.15 \mathrm{~m}^{3}$ and 0.105 Mpa , the pressure remaining constant during the process. There is a transfer of 37.6 KJ of heat from the gas during the process. How much does the internal energy of the gas change?

A piston and cylinder machine contain a fluid system which passes through a complete cycle of four processes. During a cycle the sum of all heat transfer is -170 KJ . The system completes 100 cycles per min. Complete the following table showing the method for each item, and computes the net rate of work output in KW.

Process	Heat transfer in $\mathrm{KJ} / \mathrm{min}$	Work done in $\mathrm{KJ} / \mathrm{min}$	Change in internal energy $\mathrm{KJ} / \mathrm{min}$
$1-2$	0	2170	-
$2-3$	21,000	0	-
$3-4$	$-2,100$	-	$-36,600$
$4-1$	-	-	-

a) Compare heat engine and a reversed heat engine.
b) A heat engine receives heat at the rate of $1500 \mathrm{KJ} / \mathrm{min}$ and gives an output of 8.2 KW. Determine i) The thermal efficiency ii) The rate of heat rejection.
a) Write a short note on i) reversibility and irreversibility ii) availability and unavailability.
b) Analyze the coefficient of performance and heat transfer rate in the condenser of a refrigerator in KJ / h which has a refrigeration capacity of $12000 \mathrm{KJ} / \mathrm{h}$ when power input is 0.75 KW .
A Reversible Heat pump is used to maintain a temperature of $0^{0} \mathrm{C}$ in a

L2 5M
L1 5M
L1, L5 refrigerator when it rejects the heat to the surrounding at $25^{\circ} \mathrm{C}$. If the heat removal rate from the refrigerator is $1440 \mathrm{KJ} / \mathrm{min}$ i) determine the C.O.P of the machine and work input is required. ii) If the required input to run the pump is developed by a reversible engine which receives heat at $380^{\circ} \mathrm{C}$ and reject heat to atm then determine the overall C.O.P of the system.

9
10 Explain the following terms
a) Recall short notes on concept of change in entropy. L1 4M
b) Gives an expression for entropy changes for open systems.
a) What are the limitations of the First law of Thermodynamics?
b) Compare steady and unsteady flow process.
c) Write some examples of irreversible process.
d) Define thermal efficiency of a heat engine cycle.

L1 2M
e) Define the term Entropy.

L2 2 M
L1 2M

UNIT - III

Recall a short note on a) Equation of Ideal gas b) Avogadro laws.
L1 10M
Prove that for an ideal gas $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$.
L5 10 M
Develop the equation used for computing the entropy change of an Ideal gas.
a) State and Explain Dalton law of partial pressure.
b) How the partial pressure in gas mixture related to mole fraction?

L2 5M
Develop the expression of work transfer for an ideal gas in reversible L4 5M isothermal process.
$6 \quad$ A cylinder contains a $0.45 \mathrm{~m}^{3}$ of gas at $1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and $80^{\circ} \mathrm{C}$. The gas is compressed to volume of $0.13 \mathrm{~m}^{3}$ the final pressure being $5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ Determine
i) The mass of gas ii) the value of index ' n ' for compression iii) The increase in internal energy of the gas. iv) The heat received or rejected by the gas during the compression. Take $\gamma=1.4, \mathrm{R}=294.2 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}$.
7 A reversible adiabatic process begins at $\mathrm{P}_{1}=10$ bar, $\mathrm{t}_{1}=300^{\circ} \mathrm{C}$ and end with $P_{2}=1$ bar Find the specific volume and the work done per kg of fluid if
a) the fluid is air
b) the fluid is steam.
$8 \quad$ A fluid at 200 KPa and $300^{\circ} \mathrm{C}$ has a volume of $0.8 \mathrm{~m}^{3}$. In a frictionless process at constant volume the pressure changes to 100 KPa .Find the final temperature and the heat transfer a) the fluid is air b) the fluid is steam.
9. a) What is a polytrophic process?
b) A fluid is having a temperature of $150^{\circ} \mathrm{C}$ and a specific volume of 0.96 $\mathrm{m}^{3} / \mathrm{kg}$. Find for 1 kg of fluid, the work, heat transferred and final temperature if a) the fluid is air b) the fluid is steam.
a) What is mole?
b) What is Avogadro law?
c) Define an Ideal gas.

L1 2M
d) What is Boltzmann constant?

L1 2M
e) What is an equation of state?

UNIT - IV

1. a) Develop an expression for Carnot Cycle and efficiency of cycle.

L3 5M
b) A carnot engine working between $400^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ produce 130 KJ of work. Determine i) The thermal efficiency. ii) the heat added iii) The entropy changes during the heat rejection process.
2. Develop the expression for air standard efficiency, work done of an otto cycle.
3. a) Develop the expression for air standard efficiency for diesel engine.
b) The stroke and cylinder diameter of a compression ignition engine are 250 mm and 150 mm respectively. If the clearance volume is $0.0004 \mathrm{~m}^{3}$ and fuel injection take place at constant pressure for 5% of the stroke. Determine the efficiency of the engine. Assume the engine working on the diesel cycle.
4 Develop an expression for air standard efficiency of dual combination cycle.
5 The swept volume of a diesel engine working on dual cycle is $0.0053 \mathrm{~m}^{3}$. The maximum pressure is 65 bar. Fuel injection end at 5% of stroke. The temperature and pressure at the stroke of compression are $80^{\circ} \mathrm{C}$ and 0.9 bar. Determine efficiency of air take $\gamma=1.4$.
6 Build the phase equilibrium diagram for a pure substance P-T plot with relevant constant property line.
7 Build the phase equilibrium diagram for a pure substance T-S plot with relevant constant property line.
8 a) Show the phase equilibrium diagram for a pure substance h-S plot with relevant constant property line.
b) Show the enthalpy, entropy and volume of steam at 1.4 MPa . $\mathrm{L} 2 \quad 5 \mathrm{M}$

9 a) Recall a short note on dryness fraction. L1 5M
b) Find the saturation temperature change in specific volume and entropy during evaporation and latent heat of vaporization of steam at $1 \mathrm{Mpa} 380^{\circ} \mathrm{C}$.
10 a) What is Pure substance?
b) What are saturation states?
c) What do you understand triple point?

L1 2M
d) What is critical state, critical pressure, and critical temperature?
e) What are cyclic and non cyclic heat engine?

L1 2M
L2 2M
L1 2M
L1 2M

UNIT - V

a) Classify Boilers. L4 6M
b) Give the comparison between fire tube and water tube boilers. L4 4M
Explain with neat sketch the construction and working of bibcock and Wilcox boiler. L2 10 M
Explain with neat sketch the construction and working of following high pressure boiler a) lamont boiler b) Benson Boiler L2 10 M
Explain with help of neat diagram the fire tube boilers of Cochran boilers. L2 10MExplain with neat sketches of the following boiler mountings a) Water levelL2 10 MIndicator b) pressure gaugeExplain with neat sketches of the following boiler mountings a) Fusible plugL2 10M
b) Blow off cock
Explain with neat sketch of super heater in boiler accessories.L2 10 MExplain with neat sketch of super Economizer in boiler accessories.L2 10 MExplain with neat sketch of super Air preheater in boiler accessories.L2 10 M
a) Define the term availability. L1 2M
b) What is function of boiler mounting? L1 2M
c) How do accessories differ from mounting? L1 2M
d) Define boiler. L1 2M
e) What do you mean Irreversibility? L1 2M

